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Principal Facts for Gravity Stations 
Collected in 2010 from White Pine and 
Lincoln Counties, East-Central Nevada 

By Edward A. Mankinen and Edwin H. McKee1

Abstract  

 

Increasing demands on the Colorado River system within the arid Southwestern United 

States have focused attention on finding new, alternative sources of water.  Particular attention is 

being paid to the eastern Great Basin, where important ground-water systems occur within a 

regionally extensive sequence of Paleozoic carbonate rocks and in the Cenozoic basin-fill 

deposits that occur throughout the region.  Geophysical investigations to characterize the 

geologic framework of aquifers in eastern Nevada and western Utah began in a series of 

cooperative agreements between the U.S. Geological Survey and the Southern Nevada Water 

Authority in 2003.  These studies were intended to better understand the formation of basins, 

define their subsurface shape and depth, and delineate structures that may impede or enhance 

groundwater flow.  We have combined data from gravity stations established during the current 

study with previously available data to produce an up-to-date isostatic-gravity map of the study 

area,  using a gravity inversion method to calculate depths to pre-Cenozoic basement rock and to 

estimate alluvial/volcanic fill in the valleys. 

                                                           
1 U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025. 
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Introduction  

Historically, the arid Southwestern United States has been sparsely populated, but the 

construction of dams, aqueducts, and pumping of groundwater has allowed the relatively recent 

growth of major population centers throughout the Great Basin.  Increasing demands on existing 

water supplies, specifically the Colorado River system, have focused attention on finding new, 

alternative sources,  particularly in the eastern part of the Great Basin, where a major aquifer 

system occurs in a regionally extensive, thick stratigraphic sequence of Paleozoic carbonate 

rocks.  A second important ground-water system occurs in the Cenozoic basin-fill deposits found 

throughout the region.  Geophysical investigation of several of these Cenozoic basins, using 

gravity, magnetic, and audiomagnetotelluric (AMT) methods, have been undertaken in a series 

of cooperative agreements between the U.S. Geological Survey (USGS) and the Southern 

Nevada Water Authority (SNWA) beginning in 2003.  These cooperative studies have covered 

an area of approximately 60,000 km2 in eastern Nevada and western Utah (fig. 1).  Gravity and 

ground magnetic data were described by Scheirer (2005), Mankinen and others (2006, 2007, 

2008), and Mankinen and McKee (2009), and AMT data by McPhee and others (2009 and 

references therein).  The objective of the current study was to obtain detailed gravity data along 

selected traverses to delineate the structures bounding and dividing some of these basins.  These 

investigations will help characterize the geophysical framework of the region by better 

understanding the formation of basins, defining their subsurface shape and depth, and delineating 

structures that may impede or enhance groundwater flow. 

Geologic Setting  

Geologic summaries of White Pine and Lincoln Counties, Nev., were presented by Hose 

and others (1976), Tschanz and Pampeyan (1970), and Dixon and others (2007), and additional 
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geologic information by Hose and Blake (1970), Ekren and others (1977), Stewart and Carlson 

(1978), and Stewart (1980).  The oldest rocks in the region (fig. 1) belong to the Precambrian 

McCoy Creek Group,  in which the most abundant rock type is massive quartzite.  Similar rocks 

extend stratigraphically upward to include the Lower Cambrian Prospect Mountain Quartzite.  

These metamorphic rocks are overlain by thick sequences of predominately carbonate rocks, 

ranging in age from Middle Cambrian through Lower Triassic.  The total stratigraphic thickness 

of the carbonate sequence ranges from about 1.5 to as much as 9 km, and the composite unit is 

present throughout the entire east two-thirds of the Great Basin (Plume, 1996). 

The eastern Great Basin was uplifted and eroded during the Mesozoic, with continental 

deposition occurring locally during that time.  Plutons likely exist beneath all calderas 

throughout the region, and many have been inferred elsewhere from interpretations of 

geophysical anomalies (Grauch and others, 1988; Ponce, 1990).  Although these plutons range in 

age from Jurassic through Tertiary, all the plutons are grouped with the basement rocks because 

they are similar in density to most of the pre-Cenozoic rocks but differ greatly from later 

volcanic and other basin-fill rocks.   

Immediately overlying the pre-Cenozoic basement rocks are thin, locally exposed 

continental sedimentary rocks,  capped by voluminous, regional ash-flow sheets derived from 

widely scattered calderas (Best and others, 1989; Rowley and others, 1995), largely during 

Oligocene time.  Major extensional faulting began throughout the Basin and Range Province at 

about 17 Ma (McKee, 1971; Christiansen and McKee, 1978; Stewart, 1978) and formed the 

horst-graben terrain that is well expressed in the study area (fig. 1).  Most valleys are drained 

internally and contain playas.  Basin fill typically consists of downdropped early Cenozoic 

outflow sheets overlain by alluvial material derived from the erosion of adjacent mountain 

ranges.  Interbedded basaltic lava flows also are present in many areas. 
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Procedures  

Gravity data were obtained by using a LaCoste and Romberg meter (G17C), and 

observed gravity values were referenced to two base stations.  The first base station (ELYA) at 

the Ely, Nev. airport at lat 39°17.59’ N., long -114°50.52’ W., is tied to the International Gravity 

Standardization Net 1971 (ISGN 71) gravity datum (Morelli, 1974) and has an observed gravity 

value of 979,480.08 mGal.  The second base station (ELYW2), at a U.S. Coast and Geodetic 

Survey vertical-angle benchmark stamped “Ely West Base 1944 Reference Mark 2,”  

approximately 35 km southeast of Ely at lat 39°01.54’ N., long -114°34.72’ W., has an observed 

gravity value of 979,462.96 mGal (D.A. Ponce, USGS, written commun., 2005).  Locations of 

gravity stations were determined by using a differential Global Positioning System (DGPS) 

receiver, with corrections provided by Continually Operated Reference Station (CORS) 

satellites.  Locations after postacquisition processing are accurate to within 1 m, both 

horizontally and vertically. 

Gravity Data 

We established 99 new gravity stations (table 1) along traverses in selected areas as 

shown in figures 2 through 4.  Observed gravity at each station was adjusted by assuming a 

timedependent linear drift between readings of a base station at the start and finish of each daily 

survey; this adjustment compensates for drift in the instrument’s spring.  Observed gravity values 

are considered accurate to within about 0.05 mGal, on the basis of repeated measurements over 

several mountain calibration loops (Barnes and others, 1969; Ponce and Oliver, 1981). 

Gravity data were reduced by using standard gravity corrections (Blakely, 1995) and a 

reduction density of 2,670 kg/m3.  Field terrain corrections (zones A and B of Hayford and 

Bowie, 1912) were carried out to 68 m by using templates and charts (Plouff, 2000).  Inner-zone 
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terrain corrections, which are needed to account for topographic variations near a gravity station, 

were obtained to a radial distance of 2 km by using digitized topography in a digital elevation 

model (DEM) (D. Plouff, written commun., 2006).  Outer terrain corrections, from 2 to 167 km, 

also were calculated by using digitized topography and the procedure of Plouff (1977).  The 

resulting gravity anomaly is termed the complete Bouguer anomaly.  A regional isostatic field 

was calculated by using an Airy-Heiskanen model (Heiskanen and Vening Meinesz, 1958) for 

local compensation of topographic loads (Jachens and Roberts, 1981; Simpson and others, 1986).  

The model assumes a nominal crustal thickness of 25 km, a crustal density of 2,670 kg/m3, and a 

400-kg/m3 density contrast between the crust and mantle.  This regional isostatic field was 

subtracted from the complete Bouguer anomaly, thus removing long-wavelength variations in the 

gravity field that are inversely related to topography.  The resulting isostatic residual gravity 

anomaly, therefore, reflects local density distributions within mid-crustal to upper-crustal levels. 

Gravity data obtained during the current study, along with their associated parameters, 

are listed in table 1 and are available online for download as an Excel spreadsheet.  Existing 

gravity datasets for the region were obtained from the reports by Ponce (1997), Bankey and 

others (1998), Kucks and others, 2006), and Mankinen and McKee (2009 and references therein) 

and from USGS data obtained for the Basin and Range Carbonate Aquifer Study (BARCAS) 

Project (Sweetkind and others, 2007; Watt and Ponce, 2007).  Because gravity data for the study 

area were obtained by many different observers at different times, we examined the composite 

dataset to remove duplicate and inconsistent entries.  To test for possible errors, we first 

compared reported station elevations with elevations interpolated from 10- and 30-m DEMs, 

using the procedure of D. Plouff (written commun., 2005).  Large elevation differences indicate 

possible errors in station location or elevation, and so each station identified was examined 

individually to confirm the discrepancy.  Some of these errors that occurred because of imprecise 
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locations (for example, lack of significant digits in published reports) corrected with a high 

degree of confidence.  If the source of the discrepancy could not be determined and corrected, 

the station was omitted from the dataset.  The revised data set contains 17,930 observations, 

including 1,895 observations added by USGS-SNWA cooperative studies.  The data were 

gridded at a spacing of 0.5 km by using the minimum-curvature algorithm of Webring (1981), 

and the resulting isostatic residual gravity field (fig. 5) is considered reliable for subsequent 

analyses. 

 



 7 

Gravity Inversion 

To first order, the isostatic residual gravity field (fig. 5) reflects the pronounced contrast 

between dense (~2,670 kg/m3) pre-Cenozoic basement rocks and the significantly less dense 

(generally <2,500 kg/m3) overlying volcanic and sedimentary basin fill.  Because of this relation, 

the gravity-inversion method of Jachens and Moring (1990) can be used to separate the isostatic 

residual anomaly into pre-Cenozoic basement and younger basin fields, thereby providing an 

estimate of the thickness of Cenozoic volcanic rocks and sedimentary basin fill.  A modified 

version of this method (B.A. Chuchel, unpubl. data, 2005) allows basement gravity values to be 

approximated by correcting the isostatic gravity anomaly at sites where depth to basement is 

known from deep boreholes (Garside and others, 1988; Hess, 2004) or inferred from seismic 

data.  At sites where wells did not penetrate the full thickness of basin fill, the maximum depths 

reached were used as minimum constraints in the iterative process.  Information on oil and gas 

wells in Nevada and Utah is posted0 at http://www.nbmg.unr.edu/lists/oil/oil.htm and 

http://ogm.utah.gov/oilgas/, respectively (both accessed January 27, 2011).   

The accuracy of thickness estimates derived by the gravity-inversion technique depends 

on the assumed density-depth relation of the Cenozoic volcanic and sedimentary rocks, and on 

the initial density assigned to the basement rocks.  Density of basement rocks is assumed to be 

2,670 kg/m3, which seems appropriate in the study area, where major exposures consist of late 

Precambrian through late Paleozoic marine carbonate and quartzose sedimentary rocks.  

Subvolcanic Cenozoic intrusions are included here as part of the basement because they are 

similar in physical properties to most of the older rocks but differ greatly from the eruptive and 

basin-fill sedimentary sequences.  The density-versus-depth relation we use (table 2) is the same 

used by Jachens and Moring (1990) and Saltus and Jachens (1995), and is similar to those 

http://www.nbmg.unr.edu/lists/oil/oil.htm�
http://ogm.utah.gov/oilgas/�
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relations shown to be widely applicable to other volcanic basin-fill deposits throughout Nevada 

(Blakely and others, 1998, 2000; Mankinen and others, 2003).  Results of the inversion were 

gridded at a spacing of 2.0 km by using the minimum-curvature algorithm of Webring (1981).  

The resulting map (fig. 6) was regridded to 0.5 km to conform to the gravity map. 
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Conclusions 

Gravity data collected during the course of our cooperative studies have allowed a highly 

detailed definition of basins in the study area.  The gravity data shown in figure 5 will be used to 

identify  major density contrasts in order to help locate potential subsurface faults and geologic 

contacts that may control regional groundwater flow (for example, Mankinen and McKee, 2009).  

Comparing the depth-to-basement map in figure 6 with a previously published map (Saltus and 

Jachens, 1995) illustrates the importance of an improved data distribution and incorporation of 

drillhole data unavailable for the earlier interpretation.  Thickness of basin fill exceeds 3 km in 

many valleys in the region (fig. 6) and approaches ~6.5 km in Dry Lake Valley.   
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Table 2.  Cenozoic density-depth function for eastern Nevada and western Utah. 

Depth range  
(km) 

Sedimentary rocks 
(kg/m3) 

Volcanic rocks 
(kg/m3) 

0 to 0.2 2,020 2,220 

0.2 to 0.6 2,120 2,270 

0.6 to 1.2 2,320 2,320 

> 1.2 2,420 2420 
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