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fc and SR was near linear, the calculation of ET for large areas
is essentially scale invariant. Hall et al. (1992) analyzing data
from the same campaign, concluded that Ra could be estimated
by VIs with an error of about 10%, and that VIs respond primar-
ily to photosynthetically active radiation (PAR) absorbed by the
live or green component of the canopy rather than dead tissue,
soil or litter.

Studies by Xiao et al. (2004, 2005), however, in needleleaf
and broadleaf forest canopies, have shown a high sensitivity
of NDVI to the non-photosynthetic vegetation (NPV) fraction
within canopies. They found the EVI to best depict seasonal
variations in the chlorophyll-related absorbed fraction of PAR
and the NDVI to best depict overall canopy absorbed PAR. It
needs to be emphasized that a VI alone is not sufficient to esti-
mate ET; the SVAT model used by Sellers et al. (1992) requires
additional meteorological and canopy data to calculate ETo by
Equation (2).

Early studies showed good cross-site relationships between
NDVI and ET when integrated over an entire growing season
(Running and Nemani, 1988). More recent studies have noted a
strong correlation of ET with NDVI or other VIs in agricultural
(Bausch and Neale, 1987; Choudhury et al., 1994; Penuelos
et al., 1994; Bausch, 1995; Neale et al., 1996; Jayanthi et al.,
2001; Hunsaker et al., 2003, 2005; Houborg and Soegaard, 2004)
and natural ecosystems (Seevers and Ottomann, 1994; Szilagyi,
2000, 2002; Liu et al., 2003; Nagler et al., 2005a,b; Nagler et al.,
2006; Kim, 2006; Falge et al., 2005). The best relationships
use time series of VIs measured frequently over a crop cycle
or annual growth cycle for natural vegetation. Frequently, the
ET curve (measured on the ground) follows the VI curve (or
VI combined with ground meteorological data to estimate ETo)
with a coefficient of determination (r2) of 0.75 or higher, and
within the measurement error of flux tower data or other ground
methods for measuring ET. This applies to both agricultural
crops and natural vegetation associations.

E. Application of VI Methods to Estimate ET for
Agricultural Crops

The most direct application of remotely sensed VIs to ET es-
timation in agriculture is to substitute the VI for Kc in Equation
(3). As mentioned, monthly values of Kc are now determined
from tables for a pristine crop (Allen et al., 1998; Allen, 2000).
Typically, values of Kc for most agricultural crops increase from
a minimum value at planting to a maximum value at full canopy,
then Kc might decrease as the crop matures. The crop coef-
ficient curve is the seasonal distribution of Kc expressed as a
smooth, continuous function in time or some other time-related
index, such as degree-days. However, the table values repre-
sent standard crop densities at a given location under optimum
agronomic and water management practices, and FAO strongly
recommends that they be locally modified to reflect crop devel-
opment patterns and water needs under local conditions (Allen
et al., 2000).

Remotely sensed data for spectral reflectances can provide
an indirect estimate for Kc because ET is dependent on fc, k and
LAI, and these can be integrated into a single estimate of ab-
sorbed photosynthetically active radiation by vegetation indices
derived from reflectances. In an agricultural setting, ET-NDVI
curves can have r2 > 0.90 over a cropping season (e.g., Hunsaker
et al., 2003, 2005; Er-Raki et al., 2007). Choudhury et al. (1994)
modeled the relationship between Kc and ETc and three vegeta-
tion indices for irrigated wheat in Arizona. ETc modeled from
vegetation indices compared well with lysimeter observations.
Modeled results for 19 different soil types under both wet and
dry conditions showed significant linear regressions between
ETc and vegetation indices, with r2 ranging for 0.81 for NDVI
and 0.88 for the Soil Adjusted Vegetation Index (SAVI). In fact,
VIs were good predictors of ET across different crop types, with
r2 > 0.80.

Hunsaker et al. (2003) used NDVI measured daily over
cotton fields with a hand-held radiometer to compute Kc under
stressed and unstressed condtions. The NDVI-derived Kc was
within 9% of the value derived from lysimeter studies, and
offered a method for tailoring crop irrigation schedules to
crops growing under less than pristine conditions (to prevent
wasting water). The same group (Hunsaker et al., 2005) derived
wheat Kc from NDVI measured over different fields with
different performance standards, and found that NDVI could
predict Kc within 3–5% of the measured value, and offered
an improved method for water allocation for actual crops
(Figure 4). Similar applications of spectrally-derived Kc values
were demonstrated for bean, corn, and cotton by Bausch and
Neale (1987, 1989) and Neale et al. (1996). Most agricultural
applications use ground or airborne sensor systems, because
frequent-return satellite systems such as AVHRR do not have
the resolution needed to monitor individual fields. However,
MODIS resolution does approach the size range of individual
farms. Typical plot size in western irrigation districts is 40–250
ha, which would encompass 6–40 MODIS VI pixels. MODIS
imagery can be used to track the development of a crop at 16-ay
intervals, while within-field variability can be tracked by less
frequent Thematic Mapper or other higher resolution imagery.

F. Application of VI Method to Natural Ecosystems
The same approach can be extended to natural ecosystems if

ground measurements of ET are available. Nagler et al. (2005a,c)
correlated MODIS EVI with flux tower data from eddy covari-
ance and Bowen ratio stations set in the major plant associations
on the Upper San Pedro, Middle Rio Grande, and Lower Col-
orado Rivers in the southwestern United States. MODIS and
flux tower data were available for nine towers covering the pe-
riod 2000–2004 (although some tower sites did not cover all
years). The individual pixel encompassing each flux tower was
extracted. A statistical analysis showed that ET was more closely
correlated with EVI than NDVI at each individual tower site and
for all sites combined. The only meteorological variable that was



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f N
ev

ad
a,

 L
as

 V
eg

as
, L

ib
ra

rie
s]

 A
t: 

23
:3

6 
14

 J
an

ua
ry

 2
00

8 

ESTIMATE EVAPOTRANSPIRATION 151

FIG. 4. Crop coefficient (Kc) values for wheat, relating actual ET to potential ET, as measured by water loss from crops grown in precision weighing lysimeters
(measured Kc) (circles) vs. values calculated from an equation of best fit relating ET to NDVI measured over the crop (predicted values) (squares). The graphs
show four individual replicate plots over a complete growing season. Redrawn from Hunsaker et al. (2005).

significantly correlated with ET was air temperature. A regres-
sion equation using EVI and meteorological station maximum
daily air temperature (Ta) predicted ET with an r2 of 0.76 across
plant types, sites and river systems (Figure 5A). The ET:EVI:Ta

relationship was then projected over large river stretches and
multiple plant associations on each river. The study showed
that riparian ET was considerably lower than had been esti-
mated by indirect, water balance methods, and that the exotic
shrub, saltcedar, that had been thought to be a high water user,
was actually a low to moderate water user compared to native
vegetation.

Nagler et al. (2007) extended the range of plant communities
to include upland desert sites in the Upper San Pedro basin
(Figure 5B). They correlated 16-Day, MODIS EVI values with
ET from two moisture flux towers set in sparse grass and creosote
shrub sites. The time series was from 2000 to 2004. ET was
strongly correlated with EVI at both sites, and ET over combined

sites was predicted with an r2 of 0.74 by a simple multiple linear
fit of ET to EVI and precipitation (P). The standard coefficients
for ET on EVI and P were 0.78 and 0.14, respectively, indicating
the fraction of the variability in ET that could be explained by
each variable. EVI was considered a surrogate for T, since T is
related to foliage density, whereas P was a surrogate for E, since
bare soil evaporation only proceeds for a few days after a rain
event in this environment. Hence, T dominated ET even in this
sparse landscape, and over five years greater than 80% of P was
consumed in ET.

Yang et al. (2006) combined MODIS EVI, LST, and land
cover class data with ground-based estimates of Rs to scale ET
measured at AmeriFlux sites over the continental U.S. They di-
vided the data into training sets and validation sets, and found
the equations of best fit with an inductive machine-learning tech-
nique that determined the best non-linear combination of inde-
pendent variables to explain the dependent variable. They were
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152 E. P. GLENN ET AL.

FIG. 5. (A) Measured vrs. Predicted ET at nine moisture flux tower sites on the Middle Rio Grande, Lower Colorado River, and San Pendro River in the western
U.S. Results are presented by the dominant plant species at each tower site. ET was predicted from MODIS Enhanced Vegetation Index (EVI) and air temperature
data measured on the ground. (B) Measured vrs. Predicted ET at grassland and shrubland moisture flux tower sites in a semiarid rangeland in Walnut Gulch,
Arizona. ET was predicted from MODIS EVI and precipitation. Dashed lines show 95% prediction intervals. Data are 16-day means over 2000-2004 at each site.
(A) is redrawn from data in Nagler et al. (2005c) and (B) is redrawn from Nagler et al. (2007).

able to predict ET at the validation sites over 16-day intervals
with an r2 of 0.75 and a mean square error of 23% of tower val-
ues, within the error range expected among flux towers. They
then used the model to predict the spatial distribution of ET over
the co-terminus U.S. for 2004, and showed that their model cap-

tured the spatial and temporal variations in ET determined by
ground data.

A possible pitfall of time series studies is that both ET and
VI can independently follow the same seasonal trend, producing
a spurious autocorrelation. Szilagyi (2000, 2002) circumvented
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this problem by regressing annual rates of ET, measured over
different catchments areas in Georgia over multiple years by wa-
ter balance methods, against time-averaged NDVI values from
AVHRR sensors. He obtained an r2 of 0.88 between ET and
NDVI over catchments and years, well within the error term of
the ET estimation.

G. Limitations of VI Methods
Despite the good agreement between predicted and measured

ET over diverse landscapes, VI-based scaling methods have lim-
itations. Since they rely on foliage density as the main indepen-
dent variable, they do not adequately account for direct evapora-
tion from soil or leaves following rainfall events. Methods that
are calibrated against flux tower data do incorporate both E and
T into their overall estimate of ET, so annual estimates of ET are
not biased, but the temporal response of E and T to precipitation
are different. E is expected to be highest immediately following
a rainfall event when the soil and leaves are wet, whereas T has
a much more attenuated response to precipitation.

The linear regression model developed for semiarid grassland
and shrublands (Nagler et al., 2007) incorporated precipitation
as an independent variable, which can be regarded as a surro-
gate for E over the 16-day time steps of MODIS measurements.
E can also be estimated by the FAO 56 method (Allen et al.,
1998), based on precipitation and other meteorlogical data from
micrometeorology stations.

Another limitation is that empirical VI models cannot be
expected to work outside the application for which they were
developed. The models have in common that they use VIs to
estimate foliage density and micrometeorological data and flux
tower data to calibrate VIs to ET for a particular application.
However, they differ in the suite of variables that calibrate ET
to meteorological conditions. In the continental-scale model of
Yang et al. (2006), Rs was the most important explanatory vari-
able after EVI, whereas in the riparian ecosystems, Ta was the
second most important variable, and in agricultural crops, ETo

was the most important variable after NDVI (Hunsaker et al.,
2003, 2005), while in semiarid rangelands (Nagler et al., 2007),
precipitation was the second independent variable after EVI.
These differences simply reflect the fact that different limiting
factors for ET apply in different ecosystems. For example, at a
continental scale, Rsdiffers widely over the U.S. and is the limit-
ing factor for ET (Yang et al., 2006), whereas in western riparian
corridors, Rs is not limiting, but rather atmospheric water de-
mand, determined by Ta, is the main seasonal factor controlling
ET (Nagler et al., 2005a,c). Hence, we cannot expect to develop
a universal model for ET with VI-based empirical methods, and
a given model will not be useful outside the range of conditions
for which it was developed and validated.

Time-series VI methods are also limited by the coarse reso-
lution of frequent-return satellite sensor systems. MODIS, with
250 m resolution in the Red and NIR, is an improvement over
the AVHRR series of satellites with 1 km resolution. However,

this resolution is too coarse to detect within-field variability in
agricultural districts, or separate plant associations in patchy
ecosystems.

Finally, VI-based models are useful at time scales of weeks
to years, but they cannot capture changes in ET at time scales
of hours or days needed to model ET as a function of microm-
eteorological conditions over the course of a day, or to detect
incipient stress in plants. Therefore, VI-based methods are ade-
quate for seasonal and annual monitoring of ET, but not for tasks
that require an early detection of plant stress, such as irrigation
scheduling. LST footprints can be used to detect stress effects
on vegetation without the need to know absolute values of LST
(e.g., Wan et al., 2004a; Park et al., 2005). Useful drought and
stress detection algorithms have been developed as products for
MODIS based on normalized LST data (Nishida et al., 2003a).

V. SURFACE ENERGY BALANCE METHODS TO
ESTIMATE ET BY REMOTE SENSING DATA

A. General Approach
SEB methods were developed starting in the 1970s (Sone and

Horton, 1974; Verma et al., 1976; Jackson et al., 1977; Price,
1982; Seguin and Itier, 1983; Jackson, 1986), and they have
been the subject of many hundreds of papers and numerous
NASA-sponsored field campaigns over three decades (reviewed
in Kustas et al., 2003; Li and Lyons, 1999; Diak et al., 2004;
Overgaard et al., 2006). They are physically-based models that
have the potential to model ET over short or long time steps and
over diverse sets of meteorological conditions. Most of these
methods attempt to calculate λET as a residual of Equation (1),
once Rn, G and H are determined through a combination of
ground, remote sensing, and modeling techniques. Rn can be
obtained from ground stations equipped with net radiometers,
or estimated by remote sensing data (Jackson, 1984). The GOES
sensors provide hourly solar insolation (Rs) values for the U.S.
that take into account cloud cover and are accurate within 10%
of ground measurements (Diak et al., 2004).

Rn is determined from Rs by subtracting out the shortwave
and longwave radiation reflected or emitted from the canopy.
Shortwave reflection is a function of the albedo of the surface,
which differs for vegetation and bare soil. Rn can be determined
in several ways, using ground or remote sensing data. A simple
remote sensing method is to determine fc by VIs, then to par-
tition albedo into vegetation and soil fractions using measured
or assumed albedo values for each fraction, such as 0.23 for
vegetation and 0.15 for light colored soil (e.g., Jackson et al.,
1985; Bastiaanssen, 2000). Albedo is also available from the
GOES sensors as 20 day, clear-sky composites with 10 km res-
olution (Diak et al., 2004). Upward and downward long-wave
radiation terms often result in a low residual term that is some-
times ignored in calculation of Rn, or modeled values can be
used based on LST (Bisht et al., 2005). MODIS sensors can be
used to provide an instantaneous measurement of Rn, and this
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E. The Problem of Temporal Scaling of ET
Yet another problem in estimating ET by Equations (1) and

(11) is that H and therefore ET are calculated only at the time of
satellite overpass, providing essentially an instantaneous mea-
surement. On the other hand, surface fluxes are variable over
short time periods since they are driven by the stochastic pro-
cess of turbulent flow (e.g., Cooper et al., 2000). Most frequently,
estimates of ET are required for daily or longer time periods, and
extrapolating instantaneous data to these time scales introduces
error.

The most common method of extrapolating ET estimated at
the time of satellite overpass to a daily time step is to express
ET as the evaporative fraction (EF):

EF = λET/(Rn − G) = λET/(λET + H) [13]

where Rn, G and H are all estimated at the time of satellite over-
pass. Several studies have suggested that for unstressed vege-
tation, EF can often be treated as a near constant over the day-
light hours (Jackson et al., 1983; Hall et al., 1992; Crago, 1996).
Hence, an instantaneous estimation of EF at midday (when most
satellite overpasses occur) can then be scaled over a day through
knowledge of Rn over 24 hours (G is usually 0 over a diurnal
cycle).

Hall et al. (1992) in their analysis of data from the first FIFE
campaign, showed that this was a reasonable approximation for
20 stations on the Konza Prairie over a four-day period. However,
in an analysis of ground data from 12 flux stations in southwest
France, Nichols and Cuenca (1993) reported that midday EF and
all-day EF were strongly, linearly related (r2 = 0.80) but were
not statistically equivalent. Furthermore, all-day ET estimated
from midday measurements of EF, Rn and G overestimated mea-
sured ET by 25–40%.

Wilson et al. (2003) determined the diurnal centroid for sur-
face fluxes from FLUXNET sites and found that peak values
for H and λET do not necessarily occur at the same time of day,
and that the diurnal flux responses are dependent on factors such
as horizontal advection, afternoon stomatal closure, and atmo-
spheric stability over the course of the day. Colaizzi et al. (2006)
tested different models for scaling instantaneous measurements
of ET to daily values over bare soil and several types of crops.
A single 0.5-hour measurement of ET, determined at midday in
precision weighing lysimeter, was scaled over 24 hours by five
models based on the quasi-sinusoidal nature of daily ET, Rn,
Rs, and ETo. Then measured total daytime ET was compared to
the modeled values. The models did not perform equally, and in
general errors increased as ET increased. Modeled values were
generally within 10% of measured values for transpiring crops,
but were over 30% for bare soil.

F. Approaches to Circumventing SEB Problems
Numerous studies have addressed the problems associated

with estimating H and therefore λET by SEB methods. Hall

et al. (1992), reviewing data from the first FIFE campaign, con-
cluded that there is no unique relationship between LST and
TAero that can be used to accurately predict H over the mixed
landscape scenes and temporal and spatial scales encountered
in remote sensing applications. Diak et al. (2004), reviewing
the state of the art a decade later, came to the same conclusion.
However, numerous innovative methods have been developed
to circumvent, if not solve, the problems associated with the
SEB approach to ET estimation. Although the approaches dif-
fer, many of them have a common element; they use informa-
tion available from the scene (image area) to provide context
for estimating the SEB elements. The methods fall into three
overlapping groups: one-source models, that treat the landscape
as a single unit; trapezoid or triangle methods, that plot VIs
against LSTs to infer information on ET for each pixel in a
scene; and two source models, that divide the landscape into
vegetated and unvegetated units, and estimate the SEB for each
separately. Examples of each approach are given in the follow-
ing sections, then they are evaluated in terms of accuracy and
utility.

G. SEBAL: A One-Source Model
The Surface Energy Balance Algorithm for Land (SEBAL)

method is a one-source model that has been developed as a com-
mercial product for ET estimation at the field, project and basin
scales of measurement (Bastiaanssen et al., 1998; Bastiaanssen,
2000). As in other SEB methods, SEBAL circumvents the prob-
lems inherent in an instantaneous estimate of ET by calculating
the evaporative fraction (EF).

The most important innovation of the SEBAL method is that
it circumvents the problem of estimating true values for TAero

and Ta by “self-calibrating” them from information in the image
or area of interest within an image. By inspection of the image,
“cool” pixels are located, representing water surfaces or fully
transpiring vegetated surfaces. For these pixels, SEBAL takes
the apparent surface temperature of those pixels as the value at
which to anchor H = 0 and λET = Rn. Then, again by inspection
of the image, “hot” pixels are identified, representing dry bare
soil. These pixels are assumed to have H = Rn-G, and their
apparent surface temperature anchors the value at which λET =
0. An absolute value for TAero is no longer needed, and the term
(TAero-Ta) in Equation 11 is replaced by (a + bTR) where a and b
are empirical coefficients defined by the hot and cold pixel values
for each image. The fractional values for H and λET contributing
to Rn-G can then be calculated for each pixel. Rn is determined
for each pixel from Rs by partitioning the surface into soil and
vegetation (using NDVI) then assigning albedo values to each
fraction, and by estimating net longwave radiation from LST.
G is determined as an empirically-derived function of albedo,
LST, Rn and NDVI.

Although SEBAL circumvents the problem of requiring ab-
solute values for TAero and Ta, it still requires an estimate of
(rh+ rb) in Equation (11) to estimate H. These are estimated
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0.62–0.74). This model has been improved and adapted to the
GOES satellites. Diak (1990) and Diak and Whipple (1993) im-
plemented a time-difference approach for portioning available
energy into λET or H by using the rate of rise of LST from GOES
and the growth of the atmospheric boundary layer. By using the
time rate of change of LST, the need for absolute accuracy in LST
is reduced. In the Atmosphere-Land Exchange Inverse (ALEXI)
model, LST is measured at 1.5 h and 5.5 h after local sunrise
(Anderson, 1997; Diak et al., 2004). Through knowledge of LST
and Ta (projected to 50 m) at two time points, and the growth
in thickness of the boundary layer, H can be calculated based
on the conservation of energy without absolute knowledge of
LST at either time point. The ALEXI model has been further re-
fined by incorporating higher resolution imagery to delineate the
20 individual land cover types (required to calculate roughness
lengths) within each 10 km GOES pixel (Norman et al., 2003).
The two-source model adapted to the GOES sensor systems is
being used to estimate fluxes over the continental U.S. at 10 km
resolution, and the results are translated into moisture indices for
soil (E) and vegetation (T) units of the landscape (Diak et al.,
2004).

Nishida et al. (2003a,b) adapted the two-source method to
develop an operational model for predicting ET from MODIS VI
and LST data. They used NDVI to divide the landscape into bare
soil and vegetated fractions. ET for the vegetated fractions was
calculated as the evaporative fraction based on a satellite-derived
value of available energy and a canopy-conductance model with
meteorological inputs to calculated actual ET. MODIS LST was
used to estimate evaporation from bare soil. Modeled values
compared to values measured at AMERIFLUX towers had an
r2of 0.71. Venturini et al. (2004) found that MODIS and AVHRR
sensors estimated similar values for EF over South Florida, using
a simple two-source model for ET, even though absolute LST
and NDVI values differed between the satellites.

J. Limitations of SEB Methods
As physically-based models, SEB methods are a powerful

tool for hypotheses testing and for simulating different climate
scenarios. However, like VI methods, they have limitations.
These include problems of sensitivity, scaling, and equifinality,
the tendency of models with different assumptions and levels
of complexity to converge on the same predicted outcomes. Re-
garding sensitivity, SEB models often only work well within a
narrow range of surface conditions for which they were devel-
oped and calibrated. As an example, Li et al. (2005) tested the
two-source model of Norman et al. (1995) against a refined ver-
sion during the SMACEX campaign over partially vegetated
corn and soybean fields in the Great Plains region of the United
States. The original model had resistances in parallel, with no
interaction between vegetated and bare soil patches. The refined
model had resistances in series, thereby accommodating interac-
tions between clumps of vegetation and bare soil areas. Outputs
from the two models were compared to ET measurements from

12 flux towers set in different fields in the study area. A sensi-
tivity analysis showed that both models showed a rapid rise in
predicted temperature and H at fc above 0.4–0.6 (Figure 7). The
rise in H with increasing fc is not expected (H should decrease as
vegetation cover increases) and is an artifact of the iteration pro-
cedures which adjust H and ET to conserve the energy balance.
Hence, as with empirical VI methods, care must be exercised in
applying an SEB model outside the range of conditions under
which it was developed and validated.

The scale problem arises in part because LST measurements,
on which SEB methods depend, are not scale-invariant (e.g. Hall
et al., 1992). LSTs measured at a fine scale cannot necessarily
be aggregated to estimate LST over a larger area. McCabe and
Wood (2006) investigated the scaling problem by comparing ET
predictions from satellite sensor systems with different degrees
of resolution. They used a SEB model that combined remote
sensing and ground meteorological data to estimate Rn, G, and H,
with ET calculated as the residual (Su, 2000; Su et al., 2005). The
model defines a wet-limit and dry-limit for H based on ground
meteorological data, and uses ground data as well as LST, NDVI
and other satellite data to calculate model parameters such as
albedo, roughness lengths, emmissivity, LAI, and fc. The study
compared flux tower ET data to model results using data aquired
by Landsat ETM + (60 m resolution), ASTER (90 m), and
MODIS (1020 m) over two days on the Walnut Creek watershed
in Iowa, targeting soybean and corn fields as well as the whole
catchment. ETM + and ASTER ET predictions were highly
consistent with each other (r2 = 0.96) and fell on a 1:1 line, but
the MODIS estimates were only moderately correlated with the
high-resolution images, although they gave a similar estimate of
ET over the whole catchment. However, the satellite predictions
of ET were not highly correlated with tower predictions for any
of the sensor systems (Figure 8). The authors concluded that
MODIS could be used for regional-scale ET estimates but did
not capture the spatial distribution of ET in the watershed.

The scale problem also arises because, as discussed in V–
E, satellite sensors provide only a snapshot of LST at the time
of overpass. Unlike foliage density, which has a dampened re-
sponse to environmental factors, LST and local micrometeoro-
logical conditions are volatile over time spans of 30 minutes
or less. Cooper et al. (2005) used a laser technique (LIDAR)
to measure turbulent flux over riparian plant associations in the
southwestern U.S., and reported that the 30-minute spatial vari-
ations in fluxes over the canopy were almost as large as the mean
values, setting a limit to the potential accuracy of ET estimated
by a single satellite overpass.

Equifinality is not just a problem in ET modeling, but con-
founds attempts to compare modeling approaches in all the earth
sciences as well as other disciplines (Beven and Franks, 1999;
Franks et al., 1997; Medlyn et al., 2005; Beven, 2006; Ebel
and Loague, 2006). In this paper, we have seen that many of
the parameters for SEB models are approximations rather than
actual measurements, and that the field methods for validat-
ing the ET models have errors or uncertainties on the order of
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over the preceding four decades, and that even fewer of the
advances had been used successfully in practice, providing “. . .
only trivial or dubious answers to important environmental ques-
tions.” The biggest problem he perceived was the inability, at the
time, to make routine measurements of ET in the natural envi-
ronment, leading to an over-reliance on SVAT and SEB models
at the expense of actual data in predicting ET.

In our review, the succeeding thirteen years have been char-
acterized by rapid progress in ET research and applications.
Although the same SVAT and SEB models for ET that were
developed fifty years ago are still used today, the difference
is in the quality of data that can be applied to the models.
This is seen by two examples of deficiencies cited by Morton
(1994).

One example he cited was the inadequacy of the Penman-
Monteith Equation in capturing plant-atmosphere feedback ef-
fects (Morton, 1994). Equation (2) shows that ET should
increase as VDP increases due to higher atmospheric water de-
mand, but in reality, plants often partially close their stomata to
conserve water in response to a rise in VPD, leading to an oppo-
site effect (Morton, 1994). Equation (2) allows the plant response
to be adjusted through the stomatal resistance (rs) term, but rs

is difficult to measure and was often treated as a constant over
daily time steps in 1994. Today, flux towers provide sufficient
data that Equation (2) can be inverted to provide estimates of
actual stomatal resistance in half hour steps, allowing both rs and
ET to be tracked as a function of meteorological and other envi-
ronmental factors. As an illustration of this methodology, Scott
et al. (2004) used ET and micrometeorological data from eddy
covariance flux towers to determine the effect of pre-monsoon
and post-monsoon meteorological conditions on the stomatal
resistance of riparian plants along the San Pedro River in the
southwestern U.S. By inverting the Penman-Monteith equation,
they were able to plot rs as a function of VPD across seasons,
and in response to changes in depth to the water table, affected
by natural cycles as well as pumping of water for human use.

The second example of data deficiency cited by Morton was
the inability to measure ET over spatial and temporal scales that
are relevant to environmental sciences (Morton, 1994). At the
time, ETo was typically estimated by pan evaporation or limited
amounts of micrometeorogical data then extrapolated through
SVAT models to wide areas. Today, the hundreds of micromete-
orological stations and flux tower sites distributed in agricultural
and natural ecosystems can be combined with satellite remote
sensing systems to project ET over local, regional, and conti-
nental scales of measurement in near-real-time, as seen in this
review and others (e.g., Diak et al., 2004; Nagler et al., 2005c;
Yang et al., 2006; Scott et al., 2007). These and other techni-
cal advances have allowed the interactions between plants and
the soil-atmosphere system to be elucidated at environmentally-
relevant scales, contributing to the emergence of the new mul-
tidisciplinary science of ecohydrology (Huxman et al., 2005;
Newman et al., 2006).

B. Accuracy of Current ET Estimates and Prospects for
Improvement

The current error or uncertainty in most wide-area ET es-
timates is in the range of 20–30%. This is due partly to sim-
plifying assumptions built into SEB models for estimating pa-
rameters such as TAero, LAI, fc, and transport coefficients (Jiang
et al., 2004; Overgaard et al., 2005), and partly to uncertainty
in the flux tower measurements, such as the unresolved issue
of energy closure in eddy covariance methods, which are cur-
rently the most direct methods to measure moisture fluxes over
canopies (Wilson et al., 2002). On the other hand, under ideal
conditions in agricultural plots, when actual ET can be mea-
sured in weighing lysimeters and meteorological variables are
measured at ground micrometeorology stations, VIs calibrated
with micrometerological data track ET with differences of less
than 10% (e.g., Figure 4; Hunsaker et al., 2005; Er-Raki et al.,
2007). In natural ecosystems, the r2 between VIs and ET mea-
sured at flux towers can exceed 0.9 (Nagler et al., 2005a), but
decreases when data from different types of towers (Bowen ra-
tion and eddy covariance) are combined (Nagler et al., 2005c).
This suggests that much of the scatter between measured and
predicted ET might lie with the ground measurements of ET.
Therefore, as ground methods for ET measurement improve,
we can expect that remote sensing estimates of wide-area ET
can also be improved, due to the high fidelity between VIs and
ET.

C. Comparison of VI Statistical Methods and SEB
Methods for ET Estimation

Since the 1980s, SEB methods have been the preferred
method for estimating wide-area ET in the remote sensing com-
munity and by atmospheric scientists (Overgaard et al., 2005).
The physical basis of SEB and SVAT models makes them valu-
able for hypothesis-testing about controls on surface fluxes, and
for inclusion as components in Global Climate Models. On the
other hand, now that flux towers are widely distributed in differ-
ent biomes, the alternative approach of directly scaling ground
measurements of ET through empirical VI methods has also
become feasible. These methods work because ET and ANPP
are closely correlated with foliage density as measured by VIs.
On the other hand, VIs are less useful in estimating canopy at-
tributes such as fc, LAI, or roughness lengths of canopies, which
are required in SVAT and SEB models.

Simple VI:ET models can be useful in specific applications
for which ET is required, but they cannot replace SEB meth-
ods in accounting for all the surface flux components needed
in land surface and climate models. The GOES SEB ensem-
ble of models is an example of such a system, providing 10
km resolution, real-time measurements of Rs, LST, cloud cover,
albedo, upward and downward longwave radiation, Rn, H, G,
ETo and λET within a consistent SVAT framework. Therefore,
we project that the path forward will include high-resolution,
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time-series VI methods for agricultural-and-ecosystem-scale ET
estimation, and continuous (GOES) or daily (MODIS) optical
band and LST methods for monitoring ET and other elements
of the SEB at the regional and continental scales.
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